Environmental Product Declaration

Vitreous Ceramic and Fine Fire Clay Ceramic Sanitaryware Products

1. General Information

Manufacturer Name: RAK Ceramics P.J.S.C.

P.O. Box 4714 Ras Al Khaimah, UAE

Sheikh Muhammad Bin Salem Rd, Al Jazirah Al Hamra,

Ras Al Khaimah, UAE

Program Operator: ASTM International

100 Barr Harbor Drive West Conshohocken, PA

19428-2959, USA

Declaration Number: EPD 164

Reference PCR: IBU PCR Part A: Calculation Rules for the Life Cycle Assessment

and Requirements on the Project report according to EN

15804+A2:2019- Version 1.0

IBU PCR Part B: Requirements on the EPD for Sanitary Ceramics

- Version 1.0

Date of Issuance: January 8, 2021

End of Validity: January 8, 2026

Product Name: Vitreous Ceramic and Fine Fire Clay Ceramic Sanitaryware

Products

EPD Owner: RAK Ceramics P.J.S.C.

Product Group: Ceramic Sanitaryware Products

Declared Unit: 1 t of ceramic sanitaryware

EPD Scope: Cradle-to-gate and End-of-Life (A1, A2, A3, C1, C2, C3, C4, D)

Verification: The CEN Norm EN 15804 serves as the core PCR. Independent

verification of the declaration according to ISO 14025 and ISO

21930. ☐ internal ☐ external

LCA Reviewer Timothy S. Brooke and EPD Verifier: ASTM Internationa

Timothy S. Brooke
ASTM International

2. Product

2.1 Product Description

The declared products are two types of ceramic sanitarywares produced by RAK Ceramics P.J.S.C: Vitreous Ceramic and Fine Fire Clay. The Vitreous Ceramic is used to produce water closets & tanks, wash basins & pedestals and urinals. The Fine Fire Clay ceramic is used for sinks. Since RAK Ceramics produces various sanitaryware products, available in various sizes and forms, this EPD represents two average products for the investigated ceramic sanitarywares.

2.2 Application

The ceramic sanitarywares has various applications in interior design and decoration.

2.3 Technical Data

Tests regarding dimension and surface quality as well as physical and chemical properties are performed prior to the product delivery. Ceramic Sanitaryware products conformity is based on standard methods, standard requirements and Rak Ceramics specifications of quality inspections. See Table 1 for technical details.

Ceramic sanitary ware are manufactured in a wide variety of dimensions. The following (structural) technical data are representative examples (details as L x W x H): Washbasins 850 \times 460 \times 150 mm; Bidets 530 \times 360 \times 400 mm; Toilets 600 \times 360 \times 430 mm; Urinals 650 \times 300 \times 350 mm; Cisterns 380 \times 170 \times 370 mm; Shower Trays 900 \times 900 \times 80 mm. RAK Ceramics conforms to the following standards and specifications. According to /SASO 1024(GS 1013)/AUSTRALIAN STANDARDS (AS 1976-1996)/BRITISH STANDARDS (BS - 3402)/American standards (ASME A112.19.2.2013/NF Standards/KIWA Standards (BRL-K621/06).

Test Description	Standard Test	Standard	RAK Ceramics
	Method	Requirements	Specification
Water absorption	SASO 1024 (GS1013)	≤ 0.5 %	≤ 0.3 %
Crazing resistance	SASO 1024 (GS1013)	No crazing	No crazing
Chemical resistance	SASO 1024 (GS1013)	No visible effect	No visible effect
Resistance to staining and burning	SASO 1024 (GS1013)	No visible effect	No visible effect
Abrasion resistance test	SASO 1024 (GS1013)	No visible effect	No visible effect
Water absorption	AS 1976- 1992.	≤ 0.5 %	≤ 0.3 %
Crazing resistance	AS 1976- 1992.	No crazing	No crazing
Chemical resistance	AS 1976- 1992.	No visible effect	No visible effect
Water absorption	BS 3402 : 1969	≤ 0.5 %	≤ 0.3 %
Crazing resistance	BS 3402 : 1969	No crazing	No crazing
Chemical resistance	BS 3402 : 1969	No visible effect	No visible effect
Resistance to staining and burning	BS 3402 : 1969	No visible effect	No visible effect
Water absorption	ASME A 112.19.2.2018/	≤ 0.5 %	≤ 0.3 %
	CSA B45.1-18		
Crazing resistance	ASME A 112.19.2.2018/	No crazing	No crazing
	CSA B45.1-18		
Resistance to surface abrasion (NF D 14-501)	NF STANDARDS	≥600 cycles	Class - 03
Resistance to acids(NF D 14 -506)	NF STANDARDS	No visible effect	Class - AA
Resistance to hot alkaline (NF D 14 – 507)	NF STANDARDS	No visible effect	No visible effect
Resistance to chemicals and stains (NF D 14 – 508)	NF STANDARDS	No visible effect	Class - AA
Water absorption	NF STANDARDS	≤ 0.5 %	≤ 0.3 %
Test on acid resistance of glaze	KIWA BRL – K621/06	No visible effect	No visible effect
Test on alkaline resistance of glaze	KIWA BRL – K621/06	No visible effect	No visible effect
Test on resistance of glaze to various chemical agents	KIWA BRL – K621/06	No visible effect	No visible effect
Test on spot resistance of glazes	KIWA BRL – K621/06	No visible effect	No visible effect
Test on resistance of glaze to super-heated steam	KIWA BRL – K621/06	No visible effect	No visible effect
Test on resistance of glaze and	KIWA BRL – K621/06	No visible effect	No visible effect

2.4 Delivery Status

The measurements of products can vary between different models, type, and thicknesses. Table 2 illustrates the average weight of products upon delivery, excluding packaging.

Table 2: Average product weig on delivery, excluding packagi		
Name	Average Weight	Unit / PC
Urinals	14	KGS
Wash Basin & Pedestal	28	KGS
Water Closet & Tank	38.5	KGS
Fine Fire Clay Sink / Ablution	32	KGS

2.5 Base Materials

Vitreous Ceramic and Fine Fire clay share the same production methods; whereby only the raw material composition is used in various ways during the production process. The non-linear shrinkage in the drying and firing process of Fine Fire Clay can be reduced to less than 10%. This expands the possibilities of shaping and allows for the production of larger product. Both materials, Vitreous Ceramic and Fine Fire clay, were taken into account. Table 3 provides an overview of the average composition of ceramic sanitaryare.

Table 3: Product Ingredien		Value	
Products	Ingredient Name	Value	
Vitreous Ceramic	Potash Feldspar	10-30	%
Water Closet & Tank	Potash	5-20	%
Wash Basin & Pedestal	Sand	5-20	%
Urinal	Sand Mix FC Ball Clay	5-20	%
	Hycast VC Ball Clay	5-20	%
	DS Kaolin	5-20	%
	TP Prosper Clay	5-20	%
	SPK Kaolin	5-20	%
	Ball Clay	<5	%
	Vitrous Pitchers	<5	%
	Other	<5	%
Fine Fire Clay Ceramic	AGS Ball Clay	5-20	%
Fire Clay Sink	RS 335 Ball Clay	15-25	%
	VC Ball Clay	10-20	%
	DS Kaolin	10-20	%
	Wollastonite	<5	%
	Quartz Powder	<5	%
	Chamotee	30-50	%
	Other	<5	%

Ceramic Sanitarywares

2.6 Manufacture

Sanitaryware products are made with white burning clays and finely-ground minerals that are mixed with water and burned at high temperatures. They are coated in all exposure surfaces with an impervious non-crazing vitreous glaze giving a white or colored finish. The raw materials supplied are dried where necessary before storing in silos. Smaller volumes of components are supplied in sacks and/or big bags.

Slurry: Some of the raw materials require mechanical treatment in a grinding process. This is followed by preparing the slurry by mixing the raw materials with water and passing them through a sieve.

Glaze: The raw material is mixed with water before being sieved and then ground. Glue is added shortly before processing.

Mould construction: The casting moulds required for production are made of either plaster or a porous plastic.

Casting: Small batches are manufactured exclusively with plaster moulds in a manual hand mould process. Another production method involves the battery casting method, also with plaster moulds. The porous plastic moulds are used for high-pressure casting. Remains and rejects are 100% recyclable and reintroduced back into the slurry preparation.

Drying: After casting, the ceramic products are processed through various drying methods depending on the respective complexity. Rejects are 100% recyclable and reintroduced back into the slurry preparation.

Glazing: The glaze is applied to the dry blank either manually or fully-automatically using robots. Surplus is collected, redirected and re-used in both methods.

Firing: In order to achieve a maximum kiln load, the glazed blanks are positioned manually on the firing trolley. The blanks are fired at over 1250°C in a tunnel kiln for approx. 16-24 hours.

Sorting: After firing, each product is subject to extensive individual examination. The RAK logo either is fired on or applied by laser to perfect pieces before they are assembled, packed, stored and shipped. Products, which do not meet the quality requirements, can often be touched up and fired again in a shuttle kiln or recycled.

Depending on the particular requirements, RAK Ceramics sanitaryware meets the standards and specifications. According to /SASO 1024(GS 1013)/AUSTRALIAN STANDARDS (AS 1976-

1996)/BRITISH STANDARDS (BS – 3402)/EN 13310:2015/American standards (ASME A112.19.2.2013/NF Standards/KIWA Standards (BRL- K621/06).

The organization has the capability to design and develop new products and to respond effectively to customers' needs and passion. The organization has opted for a long-term policy which means; to produce high quality products, to mean business, to be a respectable partner and to keep clients and customers satisfied.

The production processes are strictly controlled by experienced, highly compotent and professional personnel. All products pass through stringent quality control inspection and testing to ensure that only high quality tiles are delivered to customers. The tiles are continuously tested in the organization's own modern laboratories and occasionally by international and independent laboratories.

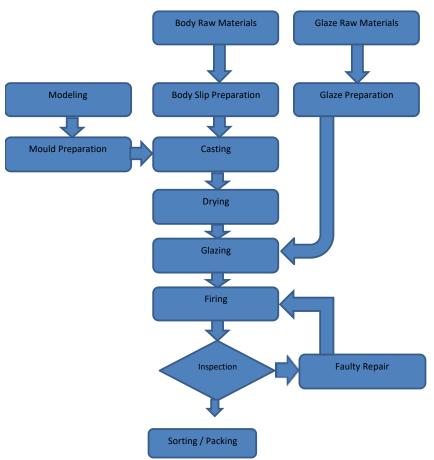


Figure 1: Ceramic Sanitaryware Flow

2.7 Environment and Health Considerations during Manufacturing

RAK Ceramics manages the activities in order to anticipate and prevent circumstances that might result in occupational injury, ill health, or adverse environmental impacts. RAK Ceramics EHS management are already in place, such as policy and risk assessment.

The significant environmental aspects were being monitored, documented, controlled, and improve the current situation as to not have adverse environmental impacts. The available guidelines and parameters obtained to which the organization subscribes shall be used as reference in environmental business planning and undertakings. All activities, products, services and new development shall operate within its bounds of parameters and restrictions.

2.8 Product Processing/Installation

There are no particular requirements on machines to be used. The manufacturing process complies with national, local authority, legal and other requirements. The installation tools required or the use of auxiliary materials are listed in the mounting instructions supplied with the product. Adequate PPE are required during installation.

2.9 Packaging

Ceramic Sanitarywares are packaged either in cardboard boxes and/or shrink-wrap or stacked on pallets and fixed by shrink-wrap. Packaging materials include, polyetlylene/ LDPE, corrugated boxes/paper cardbaord, wooden pallets, and plastic strap belts.

2.10 Conditions of Use

No particular features arise in the materials composotion of the product during use. Ceramic Sanitaryware are solid and inert due to being burnt at high temperatures. The environmental

RAK

RAK Ceramics – Ras Al Khaimah Factory

Ceramic Sanitarywares

impacts generated during this phase are very low and therefore can be negected. Not applicable: End-of-life phase is outside the scope of the underlying LCA.

2.11 Environment and Health Considerations During Use

Ceramic Sanitryware is intrinstically inert, chemically stable, and therefore during the use stage does not emit any pollutants or substances which are harmful to the environement or human health. Not applicable: End-of-life phase is outside the scope of the underlying LCA.

2.12 Reference Service Life

Not applicable: End-of-life phase is outside the scope of the underlying LCA.

2.13 Extraordinary Effects

Fire

Ceramic sanitaryware is classified as construction product A1. Non-combustible in accordance with DIN 4102-1

Water

In an event of unforeseen impact by water (e.g. flooding) on ceramic sanitaryware, no negative impacts are to be anticipated in terms of product function or the environment.

Mechanical Destruction

In the event of minor, unforeseen mechanical damage, no impacts are to be anticipated in terms of ceramic sanitaryware product function. Not applicable: End-of-life phase is outside the scope of the underlying LCA.

2.14 Re-use Phase

After demolition and deconstruction the remains of ceramic sanitaryware can be used for landfilling. Not applicable: End-of-life phase is outside the scope of the underlying LCA.

2.15 Disposal

According to the European Waste Catalogue ceramic waste belongs to the (10 12 8) with a description of waste ceramics, bricks, tiles, and construction products (after thermal processing) with entry type of absolute non-hazardous. Not applicable: End-of-life phase is outside the scope of the underlying LCA.

2.16 Further Information

Additional information is available at www.rakceramics.com

3. LCA Calculation Rules

3.1 Declared Unit

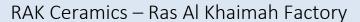
The declared unit is one tonne of ceramic sanitaryware produced at RAK Ceramics Ras Al Khaimah Factory.

3.2 System Boundary

The system boundary for this study includes the following life cycle stages as per the governing PCRs (see also Table 5):

- **A1 Raw material supply** (upstream processes): Extraction, handling, and processing of input materials.
- **A2 Transportation**: Transportation of all input materials from the suppliers to the gate of the manufacturing facility.
- **A3 Manufacturing** (core process): This phase also includes the operations of the manufacturing facility and all process emissions that occur at the production facility.
- **C1 Deconstruction/Demolition**: Per the Part B PCR, the environmental impacts generated during the C1 phase are very low and therefore are neglected.
 - **C2 Transportation:** The transportation of the product to the treatment plant is assumed to be 50 km total including the return trip as per the Part B PCR.
- **C3 Waste Processing:** The waste processing includes the processing (crushing) for the 70% of the product that is assumed to be recycled.
- **C4 Disposal**: The disposal module includes the landfilling processing for the 30% of the product that is assumed to be deposited in landfill at end of life.
- **D Recycling Potential**: The substitution effect of the recycled material is assumed to avoid the production of crushed aggregate from conventional sources.

3.3 Estimates and Assumptions


All significant foreground data was gathered from the manufacturer based on measured values (i.e. without estimation).

3.4 Cut-off Criteria

The cut-off criteria for all activity stage flows considered within the system boundary conform with ISO14044:2006 and section 6 of the IBU PCR Part A:

- All inputs and outputs to a (unit) process were included in the calculation for which data is available. Data gaps were filled by conservative assumptions with average or generic data. Any assumptions for such choices were documented.
- In case of insufficient input data or data gaps for a unit process, the cut-off criteria were 1% of renewable and non-renewable primary energy usage and 1% of the total mass of that unit process. The total neglected input flows, e.g. per module A1-A3 were a maximum

- of 5% of energy usage and mass. Conservative assumptions in combination with plausibility considerations and expert judgement were used to demonstrate compliance with these criteria.
- Particular care was taken to include material and energy flows known to have the potential
 to cause significant emissions into air and water or soil related to the environmental
 indicators of this standard. Conservative assumptions in combination with plausibility
 considerations and expert judgement were used to demonstrate compliance with these
 criteria

3.5 Background Data and 3.6 Data Quality

Data was gathered for the primary material and energy inputs used in the production of the sanitaryware for calendar year 2019. Table 4 describes each LCI data source for raw materials (A1), transportation by mode (A2) and the core manufacture process (A3). Table 4 also includes a data quality assessment for all secondary data on the basis of the technological, temporal, and geographical representativeness as per the IBU PCR.

Table 4: Secondary	Data Sources and Da	ta Quality A	ssessm	ent
A1: Raw Material Inpu	ts			
Inputs	LCI Data Source	Geography	Year	Data Quality Assessment
Ball Clay	Clay {RoW} market for	Global	2011	Technology: very good
Sand Mix FC Ball Clay	clay Cut-off, U			Process models average global technology
Hycast VC Ball Clay				Time: good
TP Prosper Clay				Data is <10 years old
Chamotee				Geography: very good
				Data is representative of global conditions.
Limestone	Limestone, crushed,	Global	2011	Technology: very good
	washed {RoW} market			Process models average global technology
	for limestone, crushed,			Time: good
	washed Cut-off, U			Data is <10 years old
				Geography: very good
				Data is representative of global conditions.
Potash	Feldspar {GLO} market	Global	2011	Technology: very good
Quartz Powder	for Cut-off, U			Process models average global technology
				Time: good
				Data is <10 years old
				Geography: very good
				Data is representative of global conditions.

Wollastonite	Dolomite {RoW} market	Global	2011	Technology: very good
	for dolomite Cut-off, U			Process models average global technology
				Time: good Data is <10 years old
				Geography: very good
				Data is representative of global conditions.
Sand	Sand {GLO} market for	Global	2011	Technology: very good
	Cut-off, U			Process models average global technology
				Time: good Data is <10 years old
				Geography: very good
				Data is representative of global conditions.
Kaolin	Kaolin {GLO} market for	Global	2011	Technology: very good
	Cut-off, U			Process models average global technology
				Time: good Data is <10 years old
				Geography: very good
				Data is representative of global conditions.
Glaze	Frit, for ceramic tile	Global	2014	Technology: very good
	{GLO} market for Cut-			Process models average global technology
	off, U			Time: good Data is <10 years old
				Geography: very good
				Data is representative of global conditions.
A2: Transportation				
Inputs	LCI Data Source	Geography	Year	Data Quality Assessment
Truck transport	Transport, freight, lorry	Global	2014	Technology: very good
	16-32 metric ton, EURO4			Process models average global technology
	{RoW} , freight, lorry 16-			Time: good Data is <10 years old
	32 metric ton, EURO4			Geography: very good
	Cut-off, U			Data is representative of global conditions.
Ocean transport	Transport, freight, sea,	Global	2011	Technology: very good
	transoceanic tanker			Process models average global technology
	{GLO} market for Cut-			Time: good Data is <10 years old
	off, U			Geography: very good
	off, U			Geography: very good Data is representative of global conditions.
A3: Manufacturing	off, U			• , , , ,
	off, U LCI Data Source	Geography	Year	• , , , ,
A3: Manufacturing Energy Grid Electricity		Geography UAE	Year 2014	Data is representative of global conditions.
Energy	LCI Data Source			Data is representative of global conditions. Data Quality Assessment
Energy	LCI Data Source Electricity, high voltage			Data is representative of global conditions. Data Quality Assessment Technology: very good
Energy	LCI Data Source Electricity, high voltage {AE} market for			Data is representative of global conditions. Data Quality Assessment Technology: very good Process models average UAE technology

Diesel Electricity	Diesel, burned in diesel-	Global	2011	Technology: very good
	electric generating set			Process models average global technology
	{GLO} market for Cut-			Time: good Data is <10 years old
	off, U			Geography: very good
				Data is representative of global conditions.
Natural Gas	Heat, district or	Global	2015	Technology: very good
	industrial {RoW}			Process models average global technology
	market for heat, district			Time: very good Data is <5 years old
	or industrial, natural gas			Geography: very good
	Cut-off, U			Data is representative of global conditions.
Water	LCI Data Source	Geography	Year	Data Quality Assessment
Freshwater	Tap water {RoW}	Global	2014	Technology: very good
	market for Alloc Rec, U			Process models average global technology
				Time: good Data is <10 years old
				Geography: very good
				Data is representative of global conditions.
Recycled water	Wastewater from	Global	2010	Technology: very good
	ceramic prod. {RoW}			Time: good Data is <10 years old
	treatment of, capacity			Geography: very good
	5E9l/year Cut-off, U			Data is representative of global conditions.
Waste	LCI Data Source	Geography	Year	Data Quality Assessment
Tiles Scrap Waste	Inert waste, for final	Global	2010	Technology: very good
	disposal {RoW}			Process models average global technology
	treatment of inert			Time: good Data is <10 years old
	waste, inert material			Geography: very good
	landfill Cut-off, U			Data is representative of global conditions.
Industrial Waste (Plastic,	Municipal solid waste	Global	2010	Technology: very good
Wood, Cardboard)	{RoW} treatment of,			Dunana and da ayayana alabal tabba alam.
	(NOV) treatment of,			Process models average global technology
,,	sanitary landfill Cut-off,			Time: good Data is <10 years old
,				
,	sanitary landfill Cut-off,			Time: good Data is <10 years old
C1-C4 and D: End of Life	sanitary landfill Cut-off,			Time: good Data is <10 years old Geography: very good
	sanitary landfill Cut-off,			Time: good Data is <10 years old Geography: very good
	sanitary landfill Cut-off,	Global	2011	Time: good Data is <10 years old Geography: very good
C1-C4 and D: End of Life	sanitary landfill Cut-off, U	Global	2011	Time: good Data is <10 years old Geography: very good Data is representative of global conditions.
C1-C4 and D: End of Life	sanitary landfill Cut-off, U Transport, freight, lorry	Global	2011	Time: good Data is <10 years old Geography: very good Data is representative of global conditions. Technology: very good
C1-C4 and D: End of Life	Sanitary landfill Cut-off, U Transport, freight, lorry 16-32 metric ton, EURO4	Global	2011	Time: good Data is <10 years old Geography: very good Data is representative of global conditions. Technology: very good Process models average global technology
C1-C4 and D: End of Life	Transport, freight, lorry 16-32 metric ton, EURO4 {RoW} transport,	Global	2011	Time: good Data is <10 years old Geography: very good Data is representative of global conditions. Technology: very good Process models average global technology Time: good Data is <10 years old

Ceramic Sanitarywares

Recycling	Gravel: Gravel, crushed	Global	2011	Technology: very good				
process/Substituted	{RoW} production			Process models average global technological				
	Cut-off, U			Time: good Data is <10 years old				
				Geography: very good				
				Data is representative of global conditions				
Landfill	Process-specific	Global	2011	Technology: very good				
	burdens, inert material			Process models average global technology				
	landfill {RoW} market			Time: good Data is <10 years old				
	for process-specific			Geography: very good				
	burdens, inert material			Data is representative of global conditions				
	landfill Cut-off, U							

3.7 Period under Review

Data was gathered for the primary material and energy inputs used in the production for calendar year 2019.

3.8 Allocation

At RAK Ceramics' Ras Al Khaimah factory several ceramic and sanitaryware products are produced. Since the primary data for manufacturing was only available on a facility level, the environmental load among the products produced is allocated according to its mass. For waste that is recycled, the 'recycled content approach' was chosen. The recycling of waste generated by the product system is cut off.

3.9 Comparability

This LCA was created using industry average data for upstream materials. Data variation can result from differences in supplier locations, manufacturing processes, manufacturing efficiency and fuel types used.

4. LCA: Scenarios and additional technical information

4.1 Biogenic Carbon Content

The product does not contain any biogenic carbon. The packaging includes biogenic carbon in the form of cardboard and this packaging is less than 5% of the combined product and packaging mass, estimated to be 20-40 kg/t.

5. LCA: Results

Life cycle impact assessment (LCIA) is the phase in which the set of results of the inventory analysis – the inventory flow table – is further processed and interpreted in terms of environmental impacts and resource use inventory metrics. As specified in the IBU PCR, Table 5 and 6a/b below summarizes the LCA results for the product systems.

Table 5: Description of the System Boundary (x: included in LCA; mnd: module not declared; mnr: module not relevant)

Ī	Product			ruction llation		Use					Ē	End-of	f-life		Load	nefits ds Bey e Systo ounda	ond em	
Raw Material supply	Transport	Manufacturing	Transport	Construction / Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	De-Construction/ Demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling
A1	A2	А3	A4	A5	B1	В2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D	D	D
х	х	x	mnd	mnd	mnd	mnd	mnr	mnr	mnr	mnd	mnd	x	Х	х	х	Х	х	х

Environmental Indicator											
Impact Categories	Abbrev.	Units	Total	A1	A2	A3	C1	C2	C3	C4	D
Global warming potential	GWP - total	kg CO2-eq	5.61E+00	1.76E+00	1.95E-01	3.46E+00	0.00	1.72E-01	1.22E-01	1.61E-02	-1.22E-01
Global warming potential - fossil fuels	GWP - fossil	kg CO2-eq	5.28E+00	1.76E+00	1.95E-01	3.14E+00	0.00	1.72E-01	1.20E-01	1.61E-02	-1.20E-01
Global warming potential - biogenic	GWP - biogenic	kg CO2-eq	3.27E-01	2.50E-03	7.54E-05	3.24E-01	0.00	6.67E-05	1.56E-03	4.35E-05	-1.56E-03
GWP land use & land use change	GWP - luluc	kg CO2-eq	2.22E-03	1.80E-03	7.05E-05	2.87E-04	0.00	6.23E-05	1.59E-04	1.36E-06	-1.59E-04
Depletion potential of the stratospheric ozone layer	ODP	kg CFC-11-eq	1.09E-06	4.49E-07	3.43E-08	5.69E-07	0.00	3.76E-08	1.09E-08	3.23E-09	-1.09E-08
Acidification potential of land and water	AP	kg SO2-eq	2.27E-02	1.40E-02	7.00E-04	7.20E-03	0.00	6.70E-04	6.07E-04	1.16E-04	-6.07E-04
Acidification potential, accumulated exceedance	AP	mol H+-eq	2.70E-02	1.49E-02	9.97E-04	1.01E-02	0.00	8.81E-04	7.81E-04	1.61E-04	-7.81E-04
Eutrophication potential	EP	kg PO4-eq	7.99E-03	5.30E-03	2.00E-04	2.30E-03	0.00	1.59E-04	3.00E-04	2.72E-05	-3.00E-04
Eutrophication, fraction of nutrients reaching freshwater end compartment	EP-Freshwater	kg PO4-eq	6.73E-05	4.66E-05	8.24E-07	4.37E-06	0.00	1.46E-05	7.35E-05	9.10E-07	-7.35E-05
Eutrophication, fraction of nutrients reaching marine end compartment	EP- Marine	kg N-eq	6.58E-04	1.37E-04	1.68E-05	1.39E-04	0.00	2.96E-04	1.77E-04	6.91E-05	-1.77E-04
Eutrophication, accumulated exceedance	EP- Terrestrial	mol N-eq	6.83E-03	1.50E-03	1.83E-04	1.15E-03	0.00	3.24E-03	2.14E-03	7.57E-04	-2.14E-03
Formation potential of tropospheric ozone photochemical oxidants	POCP	kg ethene-eq	1.23E-03	6.00E-04	0.00E+00	6.00E-04	0.00	2.33E-05	3.97E-05	4.72E-06	-3.97E-05
Formation potential of tropospheric ozone photochemical oxidants	РОСР	kg NMVOC- eq	1.97E-02	8.15E-03	1.04E-03	9.35E-03	0.00	9.23E-04	5.41E-04	2.12E-04	-5.41E-04
Abiotic Depletion Potential for Non-Fossil Resources	ADPE	kg Sb eq	2.96E-04	2.90E-04	5.58E-07	7.94E-07	0.00	4.56E-06	1.28E-05	2.35E-08	-1.28E-05
Abiotic Depletion Potential for Fossil Resources	ADPF	MJ Surplus	1.21E+02	2.32E+01	2.83E+00	9.27E+01	0.00	2.52E+00	1.34E+00	2.12E-01	-1.34E+00
Water user deprivation potential, deprivation weighted water consumption	WDP	m³ world- Eq deprived	-6.09E-01	4.98E-02	4.68E-04	8.45E-04	0.00	8.28E-03	-4.64E-01	3.09E-04	-2.05E-01

Ceramic Sanitarywares

Environmental Product Declaration

Inventory Metrics - Resources	Abbrev.	Units	Total	A1	A2	А3	C1	C2	СЗ	C4	D
Use of renewable primary energy as energy	PERE	MJ	2.39E+00	2.12E+00	2.83E-02	2.07E-01	0.00	2.86E-02	1.56E-01	1.65E-03	-1.56E-01
Use of renewable primary energy as a material	PERM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Total use of renewable primary energy	PERT	MJ	2.39E+00	2.12E+00	2.83E-02	2.07E-01	0.00	2.86E-02	1.56E-01	1.65E-03	-1.56E-01
Use of non-renewable primary energy as energy	PENRE	MJ	3.32E+01	2.72E+01	3.05E+00	0 102.9642	0.00	2.71E+00	1.86E+00	2.27E-01	-1.86E+00
Use of non-renewable primary energy as a material	PENRM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Total use of non-renewable primary energy	PENRT	MJ	3.32E+01	2.72E+01	3.05E+00	0.00E+00	0.00	2.71E+00	1.86E+00	2.27E-01	-1.86E+00
Use of secondary materials	SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of renewable secondary fuels	RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of non-renewable secondary fuels	NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of freshwater resources	FW	m3	-5.91E-01	4.09E-02	5.00E-04	2.73E-02	0.00	8.28E-03	-4.64E-01	3.09E-04	-2.05E-01
Inventory Metrics – Waste and Outputs	Abbrev.	Units	Total	A1	A2	А3	C1	C2	С3	C4	D
Disposed of Hazardous Waste	HWD	kg	1.48E+00	0.00E+00	0.00E+00	1.48E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Disposed of Non-Hazardous Waste	NHWD	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Disposed of Radioactive Waste	RWD	m3	6.14E-08	3.50E-08	7.68E-09	1.87E-08	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Components for Reuse	CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materials for Recycling	MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materials for Energy Recovery	MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported Electrical Energy (Waste to Energy)	EEE	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported Thermal Energy (Waste to Energy)	ETE	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Ceramic Sanitarywares

Environmental Product Declaration

Table 6b. Life Cycle Impact Assessment Results for 1 r	Table 6b. Life Cycle Impact Assessment Results for 1 m ² poreclain tile product													
Environmental Indicator														
Impact Categories	Abbrev.	Units	Total	A1	A2	А3	C1	C2	СЗ	C4	D			
Global warming potential	GWP - total	kg CO2-eq	8.30E+00	2.07E+00	1.82E+00	4.19E+00	0.00E+00	1.89E-01	1.34E-01	1.77E-02	-1.34E-01			
Global warming potential - fossil fuels	GWP - fossil	kg CO2-eq	7.90E+00	2.07E+00	1.82E+00	3.80E+00	0.00E+00	1.89E-01	1.32E-01	1.77E-02	-1.32E-01			
Global warming potential - biogenic	GWP - biogenic	kg CO2-eq	3.97E-01	2.33E-03	1.67E-03	3.92E-01	0.00E+00	7.34E-05	1.72E-03	4.79E-05	-1.72E-03			
GWP land use & land use change	GWP - luluc	kg CO2-eq	3.18E-03	2.03E-03	7.39E-04	3.47E-04	0.00E+00	6.86E-05	1.75E-04	1.50E-06	-1.75E-04			
Depletion potential of the stratospheric ozone layer	ODP	kg CFC-11-eq	1.49E-06	5.11E-07	3.12E-07	6.26E-07	0.00E+00	4.14E-08	1.20E-08	3.55E-09	-1.20E-08			
Acidification potential of land and water	АР	kg SO2-eq	4.55E-02	1.55E-02	2.12E-02	7.90E-03	0.00E+00	7.37E-04	6.68E-04	1.28E-04	-6.68E-04			
Acidification potential, accumulated exceedance	АР	mol H+-eq	5.46E-02	1.63E-02	2.50E-02	1.22E-02	0.00E+00	9.70E-04	8.59E-04	1.77E-04	-8.59E-04			
Eutrophication potential	EP	kg PO4-eq	1.12E-02	5.70E-03	2.80E-03	2.50E-03	0.00E+00	1.75E-04	3.30E-04	2.99E-05	-3.30E-04			
Eutrophication, fraction of nutrients reaching freshwater end compartment	EP-Freshwater	kg PO4-eq	7.56E-05	4.53E-05	8.47E-06	4.81E-06	0.00E+00	1.60E-05	8.09E-05	1.00E-06	-8.09E-05			
Eutrophication, fraction of nutrients reaching marine end compartment	EP- Marine	kg N-eq	8.68E-04	1.43E-04	1.70E-04	1.53E-04	0.00E+00	3.26E-04	1.95E-04	7.60E-05	-1.95E-04			
Eutrophication, accumulated exceedance	EP- Terrestrial	mol N-eq	9.11E-03	1.55E-03	1.89E-03	1.27E-03	0.00E+00	3.56E-03	2.36E-03	8.32E-04	-2.36E-03			
Formation potential of tropospheric ozone photochemical oxidants	POCP	kg ethene-eq	2.23E-03	7.00E-04	8.00E-04	7.00E-04	0.00E+00	2.56E-05	4.37E-05	5.19E-06	-4.37E-05			
Formation potential of tropospheric ozone photochemical oxidants	POCP	kg NMVOC-eq	3.40E-02	9.42E-03	1.20E-02	1.13E-02	0.00E+00	1.01E-03	5.96E-04	2.33E-04	-5.96E-04			
Abiotic Depletion Potential for Non-Fossil Resources	ADPE	kg Sb eq	3.12E-04	3.03E-04	3.39E-06	8.73E-07	0.00E+00	5.02E-06	1.41E-05	2.58E-08	-1.41E-05			
Abiotic Depletion Potential for Fossil Resources	ADPF	MJ Surplus	5.80E+01	2.87E+01	2.62E+01	0 101.9305	0.00E+00	2.78E+00	1.48E+00	2.33E-01	-1.48E+00			
Water user deprivation potential, deprivation weighted water consumption	WDP	m³ world- Eq deprived	-6.43E-01	7.87E-02	3.71E-03	9.29E-04	0.00E+00	9.10E-03	-5.10E-01	3.40E-04	-2.25E-01			

Inventory Metrics - Resources	Abbrev.	Units	Total	A1	A2	A3	C1	C2	СЗ	C4	D
Use of renewable primary energy as energy	PERE	MJ	2.99E+00	2.31E+00	4.20E-01	2.28E-01	0.00E+00	3.14E-02	1.72E-01	1.81E-03	-1.72E-01
Use of renewable primary energy as a material	PERM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Total use of renewable primary energy	PERT	MJ	2.99E+00	2.31E+00	4.20E-01	2.28E-01	0.00E+00	3.14E-02	1.72E-01	1.81E-03	-1.72E-01
Use of non-renewable primary energy as energy	PENRE	MJ	6.55E+01	3.36E+01	2.86E+01	0 113.2606	0.00E+00	2.99E+00	2.04E+00	2.49E-01	-2.04E+00
Use of non-renewable primary energy as a material	PENRM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Total use of non-renewable primary energy	PENRT	MJ	6.55E+01	3.36E+01	2.86E+01	0 113.2606	0.00E+00	2.99E+00	2.04E+00	2.49E-01	-2.04E+00
Use of secondary materials	SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of renewable secondary fuels	RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of non-renewable secondary fuels	NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of freshwater resources	FW	m3	-6.32E-01	5.89E-02	4.60E-03	3.01E-02	0.00E+00	9.10E-03	-5.10E-01	3.40E-04	-2.25E-01
Inventory Metrics – Waste and Outputs	Abbrev.	Units	Total	A1	A2	А3	C1	C2	С3	C4	D
Disposed of Hazardous Waste	HWD	kg	1.63E+00	0.00E+00	0.00E+00	1.63E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Disposed of Non-Hazardous Waste	NHWD	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Disposed of Radioactive Waste	RWD	m3	1.35E-07	4.35E-08	7.08E-08	2.05E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Components for Reuse	CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materials for Recycling	MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materials for Energy Recovery	MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported Electrical Energy (Waste to Energy)	EEE	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported Thermal Energy (Waste to Energy)	ETE	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

6. Interpretation

Figure 2a and 2b shows the relative contribution to the cumulative impacts of the A1 through A3 phases. The C1 through C4 phases and Module D are all relatively insignificant in terms of the overall results and are thus excluded from this contribution analysis. In the cradle-to-gate portion, the manufacturing (A3) and transportation (A2) are the major contributor to the overall impact. Major A3 impacts came from the combustion of natural gas for heat during the drying process. The transportation impacts are related to the long distances of the raw material procurement.

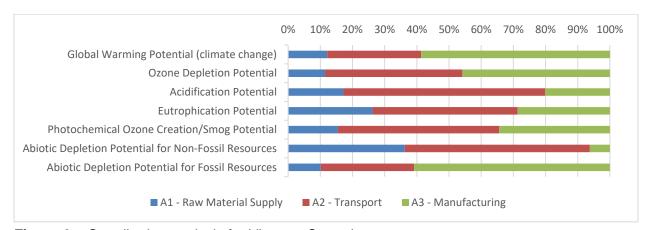


Figure 2a. Contribution analysis for Vitreous Ceramics

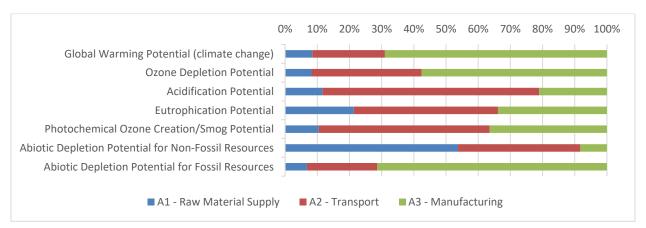


Figure 2b. Contribution analysis for Fine Fire Clay Ceramics

7. Requisite Evidence

No environmental claims beyond the LCA results are made in this EPD and thus no additional evidence is required.

CERAMICS

RAK Ceramics – Ras Al Khaimah Factory

Ceramic Sanitarywares

8. References

- A Life Cycle Assessment of Ceramic Tiles and Sanitary Ceramics Manufactured by RAK Ceramics
- 2. EN 15804 +A1:2013 Sustainability of construction works Environmental product declarations –Core rules for the product category of construction products.
- 3. EN 15804 + A2:2019 Sustainability of construction works- Environmental product declarations- Core rules for the product category of construction products.
- 4. IBU PCR Part A: Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project report according to EN 15804 + A2:2019– Version 1.0
- 5. IBU PCR Part B: Requirements on the EPD for sanitary ceramics, Version 1.0
- 6. ISO 21930: 2017 Building construction Sustainability in building construction Environmental declaration of building products.
- 7. ISO 14025: 2006 Environmental labeling and declarations Type III environmental declarations Principles and procedures.
- 8. ISO 14044: 2006 Environmental management Life cycle assessment Requirements and guidelines.
- ISO 14040: 2006 Environmental management Life cycle assessment Principles and framework.

